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Guanidinium-Rich Molecular Transporters )
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*Timeline for the development of different
scaffolds for guanidinium-rich transporters

These transporters have been
shown to enable or enhance the
passage of numerous cargos
including small molecules, peptides
and proteins, and oligonucleotides.

Acc. Chem. Res., 2013, 46, 2944—2954.
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Guanidinium-Rich Molecular Transporters ;

*Initially inspired by HIV-1 Tat protein

Natural Arginine Guanidinium-Rich Other Novel
Inspiration Homooligomers Peptoids Scaffolds

Oligocarbamates
Peplide nucleic acids
Polyprolines
Aminoglycosides
Oligocarbonates
Carbohydrates
Dendrimers

Tatyg.s7
(RKKRRQRRR)

P/D = Probe/Drug

Small Molecules

Peplides
Proteins
CELL-PENETRATING FUNCTION Oligonucleotides
RETAINED IN DIFFERENT SCAFFOLDS
Metals
1988 — Discovery that HIV-Tat crosses the cell membrane.
1997 — Discovery that the HIV Tat 9-mer facilitates uptake. Acc. Chem. Res., 2013, 46, 2944-2954.
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Mechanism of uptake: adaptive translocation and endocytosis .

A

\; @/@/@\&@/@/@\@

?????????????????????????????

/ 2,3) The charge-neutrallized species moves
through the membrane, in a process termed
“adaptive translocation”, driven into the cell

® ,
\ by the membrane potential

MEMBRANE POTENTIAL

“(ANH o) X 1) The guanidinium-group forms a bidentate bond with negative
H ol H phosphates, sulfates, and carboxylates on the cell surface
NENT L
H H
08,0

+ " CELLULAR .
Na MEMBRANE @D ADAPTIVE or
_______ TRANSLOCATION ~ ENDOCYTOSIS
A e : EXTRACELLULAR

£55¢5¢3

CELLULAR
MEMBRANE

éééégééééééééééééééééééééééé&ééééééé

v INTRACELLULAR
v K"’
- G- o g 0@
¥ 4 &
4) In the reverse of 1), the oligoguanidinium transporter
dissociates from the membrane once inside the cell
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Diverse Guanidinium-Rich Scaffolds 5

= Peptoids, spaced peptides, oligocarbamates, dendrimers, and oligocarbonates
are able to efficiently enter cells.

= A = Ao

s!ep-economy functionality
 —
HN R' = alkyl
u%)\uu, H,NYNH n,n\n/
NH, NH,
® ®
Oligoarginine Methyl(trimethylene)carbonate Amphipathic block MTC
peptide scaffold (MTC) scaffod co-oligomers
(2000) (2009) (2012)
increase Q‘\ YXL /\|/\>
stability
 —
. R' = alkyl
increase
biocompatibility “z"\"/"“
NH, Nat. Med. 2010, 6, 1253-1257.
N J. Am. Chem. Soc. 2009, 131, 16401-16403.
1,3-glycerol carbonate Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 13171-13176.
scaffold Mol. Pharmaceutics 2015, 12, 742-750.
(2015)
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In this study 6

A new class of molecular transporters, guanidinium-rich oligophosphoesters, which
exhibit increased delivery efficacy and offer several advantages over previously reported

systems.
' . Hydrolytically
lterative Suscept[ble to Relatively robust
:az*;:¥ab.e ) b=
( B’
~ /\/
N 4 g\o O“K\ c') 2 :
H n
(0] gt\ ‘
NH >
NH,
Constrained AHN YgHz NH2 \f
functionality NH NH,
2
Peptides Oligocarbonates Oligophosphoesters

Comparison of select oligomeric scaffolds for drug delivery to the oligophosphoesters described
in this work, specifically highlighting ease of synthesis, backbone hydrophilicity, structural
diversity, and aqueous stability.

J. Am. Chem. Soc. Ahead of Print DOI: 10.1021/jacs.5b13452
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Synthetic Polyphosphoesters (PPEs) ;

- Phosphorous containing polymers with repeated phosphoester linkages in the backbone
- PPE chemistry was pioneered by Penczek and co-workers in the 1970s
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Angew.Chem. Int. Ed. 2015, 54, 6098-6108.
Synthetic pathways towards PPEs and major fields of application.
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Design and Synthesis: Monomer preparation & Oligomerization

8
- Guanidinium-Functionalized Cyclic Phospholane Monomer
o)
NBoc O,‘P"Cl
NB
HO (4~ MeS J kNHBoc o j\foc P ol 0~ oc
5 % AgNO, EtN WH °¢  EtN, THF O|\/‘o 5 H
] MeCN, RT, 18 h 0 0°C,18 h

87% 79%
- Oligomerization of Hexyl-guanidinium Phospholane (HexPhos) Monomer
: Organocatalytic ring opening polymerization (OROP)

Oligomerization Deprotection
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Design and Synthesis: Monomer preparation & Oligomerization

- Oligomerization of Hexyl-guanidinium Phospholane (HexPhos) Monomer
: Simple, one-flask procedure, oligomers of a variety of lengths were synthesized by
controlling the initiator (4 or 5) to monomer (3) ratio.

Table 1. Guanidinium-Functionalized Oligomers Qn o
Synthesized by Organocatalytic Ring-Opening O'S_N\/\O P o™~~9y
Oligomerization © n o
CF4CO;
entry initiator DP (NMR)® M, (GPC)®* M, /M, (GPC)® ! fan <8 H\A @JNEQ
PN =

6a  Dansyl (4) 8 2537 131 Son - 12 N NH,

6b  Dansyl (4) 10 2718 142 edn=18

6¢c Dansyl (4) 12 3262 1.22

6d  Dansyl (4) 18 3594 131

Ge Dansyl (4) 25 3472 1.38 0

7 Trityl-hexyl (5) 8 2838 1.37 HS ¥ o P o™~y
“DP calculated by end group analysis. °M, and M,./M,, determined for © " cR.co®
protected oligomers by gel permeation chromatography (GPC) in 7n=8 ONH, e
THEF relative to polystyrene standards N)J\NH
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Hydrolytic Stability of HexPhos Oligomers
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Increased hydrolytic and biological stability
relative to oligocarbonates (t,,,= 8 h) and
oligoesters (t,,,= 1-3 h)

Figure S5. Relative rates of hydrolysis of
HexPhos oligomer 6d as measured by 31P NMR
in different buffers. All incubations were done at
35 °C.

Figure S6. Representative 3P NMR spectra of
hydrolysis of HexPhos25 oligomer in Tris-EDTA
buffer over time. The peak at 6 =-2.7 represents
the starting oligophosphoester, while new peaks at
approx. -2.25, -0.9, and -0.5 represent hydrolysis
products.
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Cellular Uptake of HexPhos Molecular Transporters

11
Length Depepdence (in Hela cells) QMm 9
A 35 + 0O=S+N
NH,
8
g0 99
o
o ] NH ©
§ 25 N CF3CO,
S 20 - HzN @NHg
p Dansyl-Argg (8)
o 15 -
=
©
£ o[ '
4 5 - - \/\O O/j/\/\o
8
0 99 0”0
Cells 8 9 6a 6b 6¢c 6d 6e N
AN\ HN NH,
. Dansyl-MTC-Gg (9) CF,CO; NH:
Cell Line Dependence
B 4500 A
EHela
A400° 1 mJurkat
23500 { ™OVCA429
<
0] n o
CF4CO5
N 6an=28 ®JNJ\HZ
6cn=12 H 2
6dn=18
6en=25
Cells 8 9 6a
11
Chaemin Lim @ Wipf Group Page 11 of 17 3/27/2016



Cellular Uptake and Toxicity of HexPhos Oligomers

12
Dose Depepdence Cellular Toxicity
7000 Compound LDsy (M) Hela cells
g 6000
b Dansyl-MTC-G8 (9) 36.04 + 5.55
§ 5000
o
g 4000 Dansyl-HexPhos8 (6a) 18.03 £1.72
-
; 3000 Dansyl-HexPhos10 (6b) 11.58 £ 1.60
1]
§ N Dansyl-HexPhos12 (6¢) 9.54 +1.23
2 1000
Dansyl-HexPhos18 (6d) 6.40 £ 2.28
0
Cals  SM M fsM  20M 25 Dansyl-HexPhos25 (6e) 3.44 +0.48
Figure S8. Concentration dependence of uptake Figure S9. Compiled MTT-determined LD, (the
of Dansyl-HexPhos8 oligomer 6a in Hela cells. amount of compound required to reduce cellular
viability by half) values for HexPhos oligomers in
Hela cells.
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Mechanism of Uptake

13

Lo Figure S10. Mechanistic study of uptake of
100 Dansyl-HexPhos8 oligomer 6a in Hela cells.
§ Cells were pre-treated with designed
§ 80 conditions and the uptake measured by flow
§ cytometry.
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Delivery of Thiol-Reactive Probes

14

Clickable conjugation strategy
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Uptake of FL-maleimide to Hela cells by click- Representative flow cytometry histogram showing
coupling to thiol-initiated HexPhos oligomer 8 a complete shift in population fluorescence for
determined by flow cytometry. cells treated with FL-HexPhos conjugate 12.
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Intracellular Localization of HexPhos Oligomer 12

15
O <Q >
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CF,COY
O ®NH,
N NH
H 2
10 min 16 hours 10 min 16 hours

Hoechst MitoTracker

Merge

Confocal microscopy images of Hela cells treated with FL-HexPhos8 conjugate 12 (10 uM) for 10 min.
Cell nuclei were counterstained with Hoechst 33342 and mitochondria stained with MitoTracker prior
to imaging. Images were taken 10 min and 16 h following treatment. Scale bars represent 25 um.
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Synthesis and Evaluation of Paclitaxel (PTX)-HexPhos Conjugate .

Ph O

HS-HexPhos8
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- HQ,_ = AcO

DMF 60 B0 o
RT, 18 h

15 16
55%
Cellular toxicity (ECs,) for free PTX and PTX-HexPhos conjugates
in wild-type and resistant OVCA-429 ovarian cancer cells

ECso (uM)“

OVCA-429 (wild- OVCA-429T resistance
compound type) (resistant) factor?

PTX Alone (14)  0.051 + 0.037 20 >400
PTX-HexPhos8 0.26 + 0.073 14 £ 045 S.2
(16)
HS-HexPhos8 (7) - 13 £29 =
“Determined by treating cells for 20 min with compounds, followed by
a wash and incubation in drug-free media for 72 h and determining
viability by MTT assay. All values are the result of three separate
experiments, each performed in triplicate with error being the standard
deviation. PResistance factor = ECy, (wild-type)/ECs, (resistant) 16
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Summary 17

Applications

Kit-style conjugation

9 Substrate-initated
P to multiple cargos

e | Transporters
nalo /l ~ 0 % g O /\/O H / \
O n
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Non-releasable

Overcoming dru
Transporters P

L ) resistance
@oNH2 ; \
Initiator = Drug, N J\NH Redox-releasable Mitochondrial
Probe, H 2 _Transporters | targeting

Linker
Guanidinium-rich Oligophosphoesters

* The design, synthesis, and biological evaluation of a new class of guanidinium-rich
oligophosphoester delivery vehicles in multiple delivery applications have been
described

e Cellular uptake is substantially higher than the previously reported oligoarginine and
oligocarbonate systems

* Preparation of HexPhos monomer and oligomerization process — in Glovebox

* Possibilities for dermatological applications?

J. Am. Chem. Soc. Ahead of Print DOI: 10.1021/jacs.5b13452
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